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Abstract—This paper proposes an artificial immune 

system based algorithm for solving constrained 

optimization problems, inspired by the principle of the 

vertebrate immune system. The analogy between the 

mechanism of vertebrate immune system and constrained 

optimization formulation is first given. The population is 

divided into two groups- feasible individuals and infeasible 

individuals. The infeasible individuals are viewed as the 

inactivated immune cells approaching the feasible regions 

by decreasing the constraint violations whereas the feasible 

individuals are treated as activated immune cells searching 

for the optima. The interaction between them through the 

extracted directional information is facilitated mimicking 

the functionality of T cells. This mechanism not only 

encourages infeasible individuals approaching feasibility 

regions, but facilitates exploring the boundary between the 

feasible and infeasible regions in which optima are often 

located. This approach is validated and performance is 

quantified by the benchmark functions used in related 

researches through statistical means with those of the 

state-of-the-art from various branches of evolutionary 

computation paradigms. The performance obtained is fairly 

competitive and in some cases even better.  

Index Terms—Artificial immune system, constrained 

optimization, constraint handling 

I. INTRODUCTION 

rtificial immune system (AIS) is a newly emerging 

computational paradigm inspired by the 

fundamentals of immune system.  

1.1 Biological Immune System 

In biology, the human or other vertebrate immune 

system is an adaptive, distributed, robust, self-regulate, 

and complicated system which constituted by cells, 

molecules, and organs that protect the body against 

known and unknown diseases. The immune system 

possesses multilevel defense mechanisms. The protection 

layers such as physical barriers and innate immune 

system constitute the non-specific response, whereas the 

adaptive immune system is responsible for the specific 

response. Pathogens or any molecules that stimulate the 

immune response are simply called antigens in this paper. 

Antigens in the environment are blocked from getting 

into the body by physical barriers, such as skin and hairs, 

at first. Underneath the skin, there are physiological 

barriers such as saliva and stomach acids which can kill 

most microorganisms ingested in food and water. 

Antigens that escape from the physical barriers are 

tackled by the other non-specific response mechanism 

called innate immune system. Innate immune cells such 

as macrophages can recognize foreign antigens and 

fragment them into peptides. These peptides, express on 

the surface of macrophage, make it serve as antigen 

present cells. Meanwhile, these antigen present cells 

secrete activating molecules such as chemical signals to 

stimulate the start of the adaptive immune response. The 

adaptive immune response is an acquired ability that 

reacts specifically to the attacking antigens. The adaptive 

immune system is composed of two types of 

lymphocytes: B lymphocytes (B-cells) and T 

lymphocytes (T-cells). The main functions of B-cells 

include the production and secretion of antibodies as a 

response to bind with antigens. Each B-cell is 

programmed to produce a specific antibody. The 

production of binding antibodies is usually a way of 

signaling other cells, such as scavenging cells, to remove 

the bound substance. The main functions of T-cells 

include the regulation of other cells’ actions and directly 

attack the host infected cells. T-cells work, primarily, by 

secreting cytokines, lymphokines, or the other chemical 

substance to maintain the regular function of the immune 

system. Moreover, the adaptive response is also able to 

memorize the attacking antigens so that it will be 

effectively fought against the same or similar antigens in 

the future [1-3].  

1.2 AIS for Constrained Optimization 

Normally, immune cells patrol the body circulating 

along the blood flow to detect if there are antigens 

present. Once antigen is detected, the immune response 

is stimulated. The activated immune cells eliminate the 

antigens directly or secrete signals to recruit other 

immune cells to help. Immune cells are supposed to be 

able to recognize the antigen pattern, extract the antigen 

feature, learn the antigen type, select the suitable reacting 

mechanism to control the harm, and remember the 

experience. To make it simpler, due to the B-cells having 

the capability of antigen representation as same as the 

innate immune cells, let us omit the innate immune 

system and only consider the immune cells in adaptive 

immune system. Naïve B cells patrol the body searching 
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for the antigen. Without activation of the chemical 

signals, naïve B cells do not perform specific immune 

response. However, with the irritation of chemical signals 

secreted by T-cells, naïve B cells transform into effector 

B cells, modify their antibody, and fight with the antigens. 

In spirit, chemical signals work as constrained conditions 

which control the function of B-cells in the immune 

response. Similarly in many real world problems, the 

decision variables are subject to constraints which limit 

the search for optimal solution only in the feasible region. 

A constrained optimization problem can be defined as 

follows, 

 Minimize )(xf  (1) 

subject to: 

 qixg
i

,,1,0)(   (2) 

 mqixh
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where a vector of decision variables  nxxx ,,1  in 

which each njx j ,,1,   is bounded by a lower and a 

upper bound, 
jjj UxL   defining the search space 

nS  , q is the number of inequality constraints while 

qm  is the number of equality constraints. A solution 

satisfies all the inequality and equality constraints is 

called a feasible solution, whereas a solution violates at 

least one constraint is called infeasible solution. The 

inequality constraints that satisfy 0)( xg
i

 at the global 

optimum solution are called active constraints.  

In this article, a novel constrained artificial immune 

algorithm is proposed based on immune response 

principle. A new perspective from the signal transfer and 

the interaction among the immune cells is proposed to 

handle the constrained condition and optimize the 

problems. The remainder of this paper is organized as 

follows. Section II reviews related works of handling 

constrained optimization problems using AIS. In Section 

III, the proposed algorithm is presented in detail. Section 

IV discusses the results obtained for some selected 

benchmark functions and compares the results obtained 

by the states-of-the-art. Finally, Section V presents some 

concluding remarks and relevant observations. 

II. LITERATURE REVIEW 

Equipped with fundamental characteristics of 

biological immune system, AIS has received appreciable 

attention to solving complex computational problems in 

the past few years. However, only very few research 

work exists in the field of constraint handling using AIS. 

A survey paper which summarized algorithms ever 

proposed in handing constrained optimization based on 

artificial immune system can be found in [4]. 

2.1 Hybrid AIS with GA and Other Mechanisms 

A branch of hybrid AISs with GA was proposed 

[5-8]. The hybrid algorithms possess two layers: GA 

outer layer and AIS inner layer. The outer GA is 

responsible for the unconstrained objective function 

optimization, while the inner AIS embedded into the 

outer GA helps population approaching feasible regions.  

Based on its constraint-handling technique, a clonal 

selection evolutionary strategy was proposed [9]. 

Immune algorithm is also integrated with hill climbing 

local search in [10], and integrated with particle swarm 

optimization (PSO) in [11] for constrained optimization 

problems. 

In all above designs, AISs play a complementary 

role in either handling the constraints or improving the 

search ability. Although some of these hybrid algorithms 

show very competitive results, the hybrid schema often 

adversely increase the complexity of the designs.  

2.2 AIS based Constraint Handling Algorithms 

AIS algorithms that are exclusively based on process 

and principles directly extracted from the biological 

immune system were proposed [12-18].  

2.2.1 AIS based on clonal selection algorithm 

Cruz-Cortés et al. [12] proposed an approach based 

on CLONALG [19] to constraint handling using AIS. 

Gaussian-distributed mutations, Cauchy-distributed 

mutations, and controlled uniform mutation are 

compared. In [13], the feasible individuals and infeasible 

individuals are given different mutation operations. The 

mutation mechanism is efficient to balance the 

exploration and exploitation during the evolution of 

search. The algorithm is simple to implement and the 

experiment result is found better than that of [12]. 

As these algorithms applying the unconstrained 

optimization technique to the constraint optimization, it 

is hard to solve the problems with discontinuous search 

space or multiple disconnected feasible regions. 

2.2.2 AIS based on idiotypic network approach 

A new algorithm which combines clonal selection 

theory with idiotypic network theory was developed by 

Wu [14-15]. In the paper, idiotypic network selection 

operator is used to control the number of good solutions; 

somatic hypermutation and receptor editing operators are 

constructed to explore the search space; and bone 

marrow operator is to maintain the diversity of the 

solutions. Adaptive penalty function is introduced to 

transform the constrained optimization problem into an 

unconstrained one. The simulation results show that the 

algorithm is effective and efficient. 

2.3.3 AIS based on T-cell model 

In [16-17], T-cells model to handle the constrained 

optimization was proposed. Based on the maturation or 

development level, T-cells are divided into three groups: 

Virgin cells (VC), Effector cells (EC), and Memory cells 

(MC). Giving each group a specific size of population, 

mutation operator, and selection principles, the algorithm 

adaptively adjusts the mechanism under different 



 
 

conditions. From the experiment comparison, T-cells 

model is proven to be very competitive with respect to 

the state-of-the-art designs. The algorithm is novel and 

effective, but it is complicated in the structure. Many 

design parameters requiring additional tuning may limit 

its uses in applications.  

2.4 AIS with Special Characteristics 

An algorithm deployed the communication between 

innate immune response and adaptive response in 

immune system was proposed in [18]. Vaccine operator 

proposed in [20] is used to explore the search area. 10% 

of the antibodies from antibody population are selected 

to form Major Histocompatibility Complex (MHC) as the 

direction extracted from the better individuals. The 

combination of the directed mutation with vaccines 

extracted from the early stage of the algorithm give a 

speedy way of discovering the feasible regions. The 

performance of the algorithm is very competitive, and the 

vaccine operator guarantees the high feasible success rate. 

However, high computational complexity is needed to 

guarantee the extracted vaccines are able to help 

antibodies traverse the whole searching space without 

exploring the same area repeatedly.  

The optima-searching ability of AIS has been proven 

to be effective in constrained optimization problems, but 

the constraint-handling mechanism remains deficient. 

The interrelation among the system’s components is 

rarely mentioned.  

III. PROPOSED ALGORITHM 

The immune response of B-cells to an antigen is a 

process of pursuing the best binding antibody to the 

antigen which is considered an optimization process. 

Naïve B-cells circulate in the body searching for the 

infectious spot as global search, while effector B-cells 

modify their shapes to match the antigen as local search. 

T-cells balance the global and local search through 

secreting chemical signals. Additionally, the chemical 

signals secreted by T-cells perform exactly as the 

constraints to control the function of B-cells. Without the 

stimulating signal, B-cells only respond to the certain 

antigen in the manner of innate immune response in a 

nonspecific way. When B-cells receive the stimulating 

signals, the activated B-cells will adaptively adjust 

themselves to react to the antigen in a specific manner. 

According to the different satisfactions to the constraints, 

B-cells are separated into two distinct types- naïve 

(inactivated) B-cells and effector (activated) B-cells. The 

way B-cells under the control of T-cells in pursuing the 

best binding antibody to the antigen can be considered as 

a constrained optimization process. Inspired by the 

effective and rapid response of B-cells to antigens, an 

AIS algorithm is proposed herein. Constraints separate 

the candidate solutions into two groups- infeasible and 

feasible which nicely match the two states of B-cells. 

Infeasible individuals resemble the naïve B-cells to 

explore the whole search space while feasible individuals 

mimic the effector B-cells to locate the exact antigen 

(optima). Chemical signals play an intermediate role of 

transferring the information between infeasible and 

feasible individuals and balance the exploration and 

exploitation. 

The proposed algorithm as shown in Fig. 1 depicts 

the flowchart as how the algorithm works. 

 

1) Randomly initialize P individuals in the decision 

space Pix
i

,,1,  , where 
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x is the ith individual in 

the n-dimensional decision space. 

2) Evaluate the constraint violation )(
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xv for each 

individual in the population as 
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where  is the tolerance value that help transform the 

equality constraint into an inequality one. 

3) Categorize the population into two distinct groups: if 

0)( 
i

xv ,  add 
i

x  into infeasible group, IF . 

Otherwise, add it into feasible group, F . 

4) If feasible group F  is not empty, evaluate the 

fitness value )(
r

xf  for each feasible individual

Fx
r
 , Fr ,,1 , |  | indicates the cardinality. 

Then sort the individuals in the ascending order 

according to their fitness values (assuming 

minimization problem).  

a) Cloning: For each feasible individual 
r

x in the 

ranking order of r, asexually produce )(
r

xnc  

clones 
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where   is a multiplying factor (i.e., usually 

0.1), round(  ) denotes the rounding operation to 

the closest integer. Since all the individuals are 

sorted in the ascending order previously, the 

individual with higher objective value will 

receive more clones. 

b) Hypermutation: Hypermutate each clone at a rate 

inversely proportional to their affinity using 

 ,
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)(
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where )1,0(N  is a Gaussian random number 

with zero mean and unit variance, )(*
r

xf is the  

normalized fitness of 
r

x ,  is the decay 

constant that controls the step size of the 

mutation (default value is set to 5), maxgen is the 



 
 

maximum number of generations, and gen refers 

to the current generation. 

c) Selection: Evaluate the affinity of the clones. If 

the best individual of the set of mutated clones 

has the higher affinity (lower objective value) 

than the original one, substitute it. Otherwise, 

keep the original individual.  

d) Add the newly generated infeasible clones into 

the infeasible group, IF . 

5) For each individual IFx
s
 , IFs ,,1 with their 

constraint violation )(
s

xv , perform the following 

operations. 

a) Direction extraction: if there are feasible 

individuals exist in the population, choose a 

feasible individual *x  by roulette wheel 

selection based on their fitness values, and 

extract the direction information dr as follows, 

*

*

xx

xx
dr

s

s




 . (7) 

Otherwise, 10% of the best infeasible individuals 

are chosen to generate the direction based on 

their constraint violations. 

b) Location update: Infeasible individuals update 

their location either by the way of the extracted 

direction dr ,  

)1,0(' Udrxx
ss

  ,  (8) 

or just choose a random velocity to move  

 ),0(' Nxx
ss
 , (9) 

where ]1,0[  is an user defined parameter 

controlling the effect of the direction information, 

( 1.0 as suggested) )1,0(U  is a uniform 

random number generated between 0 and 1, 

Gaussian random number is used to introduce the 

random velocity.   controls the magnitude of 

the velocity (the default value is 0.2). To further 

improve upon the exploration, the location 

update repeats a few times and the best position 

is chosen to replace the current one. During 

implementation, either (8) or (9) can be chosen to 

update the individuals’ location equally or bias 

one of them based on the performance. The 

former one is applied in the paper. 

6) Suppression: Combine the infeasible and feasible 

groups together, and delete the similar individuals 

using a predefined suprresion threshold (problem 

dependent, 0.5 for reference).  

7) Receptor editing: The worst 20% individuals of the 

whole population are substituted at random (binary 

tournament selection is adopted here, few candidates 

are generated randomly, the one in the most sparse 

area is chosen). 

8) If stopping condition is not met go to Step 2. 

Otherwise, output the best one (in term of affinity) in 

the feasible group. 

 

Fig. 1 Flowchart of the proposed algorithm 

Since feasible and infeasible individuals take 

different responsibility in handling constrained 

optimization problems, we divide them into different 

groups and facilitate the interaction between them in the 

proposed algorithm. The function of feasible individuals 

is to search for the optima in the feasible regions, which 

is regarded as an unconstrained optimization search. 

Considering the fairly good performance of the 

representative algorithm in clonal selection theory- 

CLONALG [19] for unconstrained multimodal 

optimization, we borrow the operators for optimization in 

feasible regions here. The individual with higher affinity 

will bear more clones and lower mutation rate, which 

give more chance to the regions with higher objective 

value and encourage the local search. Moreover, the 

iteration is considered as a parameter to control the 

convergence of the algorithm. With the increase of 

generation count, the step size of hypermutation will 

become smaller and smaller. This implies a larger 

mutation step at the beginning and becomes smaller and 

smaller toward the end of the search process.  

On the other hand, constraints may restrict the 

feasible search space into small and disconnected regions. 

Our purpose is to search for these feasible regions and 

then locate the optima. So the task of infeasible 

individual is on one hand, global search, to explore the 

whole search space and avoid to get stuck in the local 

optima. On the other hand, approach the feasible regions 



 
 

as soon as possible. The location update operator is 

introduced to relocate the infeasible individuals. In 

addition to guide infeasible individual moving along the 

direction in reduction of the constraint violation, two 

choices are offered to each of them. Extracted directions 

are used to accelerate the infeasible individuals access 

the feasible regions, while random velocity is used to 

maintain the diversity. When there is no feasible 

individual found, a proportion of the best infeasible 

individuals are chosen to guide the rest of the individuals 

which accelerate in finding the feasible regions. 

Otherwise, direction information is extracted from 

feasible individuals to guide the infeasible individuals. 

Once some individuals reach the feasible regions, 

moving in the direction to these feasible individuals will 

accelerate the infeasible individuals to approach the 

nearest feasible regions. But, this may also attract all 

individuals move to the few early discovered feasible 

regions and stuck in these regions forever. Then, the 

algorithm will lose the ability of finding the other 

disconnected feasible regions and eventually lead to the 

premature convergence. Therefore, some of the infeasible 

individuals update their locations randomly. 

Suppression and Receptor editing are used to delete 

the crowed and similar individuals and make space for 

the newly generated individuals to maintain the diversity. 

Tournament selection used in receptor editing is capable 

of retaining the best individuals and at the same time 

balancing the size of feasible and infeasible groups.  

 

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS 

To examine the performance quantitatively, we 

applied the proposed algorithm to the constrained 

benchmark functions available from [21]. These 

benchmark functions consist of linear, nonlinear, 

quadratic, and cubic functions. Some of these functions 

have high dimensional decision space and very low 

feasibility ratio. Manyconstraints involved are equality 

constraints. For most of these testing functions, it is not 

easy even locating a feasible region.  

Each benchmark problem is run for 30 independent 

trials. Best (b), worst (w), mean (Mn), standard 

deviation(sd), and success rate (FR) to converging to a 

feasible solution are given to compare with the other 

algorithms, which are abbreviated as b, w, Mn, Md, sd, 

and FR in the tables, respectively. All the statistical 

results were taken only with respect to the runs in which 

a feasible solution was reached at the end.  

All the equality constraints are transformed into 

inequality constraint by using a tolerance factor  ,

0)( xh ( 0001.0 as suggested). To deal with 

equality constraints, dynamic mechanism originally 

proposed in [22] is adopted here.  

35,000 objective function evaluations are applied as 

a stopping criterion for each test problem. The statistical 

results are summarized in Table I. From Table I, we can 

easily find that the proposed algorithm shows very 

promising performance in handling these constrained 

problems. The algorithm achieves the required accuracy 

level for G01, G03, G06, G08, G11, G12, and G13. 

Moreover, it attains the best result for G13, even better 

than any known best result. It is worthy to note that all 30 

runs for 13 test problems produce 100% success rate in 

converging to a feasible solution. In addition, the 

stochastic ranking algorithm (SR) [23] , GA-AIS
c
 [24], 

AIS [12], AISconst [13], and T-cell algorithm [17] as the 

reference are chosen to compare with the proposed 

algorithm. To make the comparison less complicated, 

only the best and mean results are considered here to 

judge the performance of the algorithms. GA-AIS
c
 [24], 

AIS [12], AISconst [13], and T-cell algorithm [17] are the 

typical algorithms proposed for constrained optimization 

based on AIS. The proposed algorithm has a better or 

equal performance when compare with GA-AIS
c
 [24] in 

almost all the test problems except G06 and G10. Even 

for G06 and G10, only mean values of GA-AIS
c 

are 

slightly better than that of the proposed algorithm. Best 

values of the proposed algorithm outperform GA-AIS
c
 in 

all the test problems. To compare with the AIS [12] and 

AISconst [13], the results are similar. AIS [12] is equal to 

or outperformed by the proposed algorithm except for 

G04 and G05. AISconst is totally outperformed by the 

proposed algorithm. T-cell algorithm obtains very 

competitive results. T-cell algorithm is better than the 

proposed algorithm in G04, G06, and G09, and has a 

better best value in G07 and G10. However, the proposed 

algorithm acts better or equal to T-cell algorithm in the 

rest of 8 test problems (i.e., G01, G02, G03, G05, G08, 

G11, G12, and G13). According to the comparison, the 

proposed algorithm is better than or equal to these 

state-of-the-art AIS designs in most of the 13 test 

problems. 

Stochastic ranking algorithm (SR) [23], a 

well-regarded evolutionary design for constrained 

optimization, is also chosen for comparison with the 

proposed algorithm. From the Table I, SR outperforms 

the proposed algorithm in five test problems (i.e., G02, 

G04, G05, G07, and G09). Nonetheless, the proposed 

algorithm outperforms SR also in five test problems (i.e., 

G03, G06, G10, G11, and G13). Although their 

performances favor different test problems, the difference 

is quite small. On the whole, the proposed algorithm is as 

competitive as the other AIS-based algorithm and the 

state of the art. It needs to be mentioned that, for some 

problems, fitness evaluation of the infeasible region is 

not applicable, then the algorithm as SR which based on 

the evaluation of the infeasible solution will become 

useless. 

Through the results comparison, the proposed 

algorithm is found fairly competitive with respect to 

some chosen state-of-the-art designs in the constrained 

optimization field. 

 

 



 
 

V. CONCLUSIONS 

Inspired by the fundamentals of biological immune 

system, a novel artificial immune system is proposed to 

solve constrained optimization in this paper. We exploit 

the immune response from the perspective of information 

transfer and encourage the interactions between feasible 

and infeasible individuals. The direction information 

extracted is used to guide the infeasible individuals 

effectively and efficiently toward the nearby feasible 

regions. These infeasible individuals near the boundary 

of feasible and infeasible regions are reused to search the 

boundary thoroughly. Local search operator of feasible 

individuals is borrowed from the traditional clonal 

selection algorithm which had been validated to be 

effective in handling the unconstrained optimization. The 

global search of infeasible individuals simply employs 

the Gaussian random variable to introduce the 

disturbance. The experimental results show the 

performance of the proposed algorithm in solving 13 

frequently used benchmark functions. Through 

comparing with the selected representative algorithms 

from various branches of evolutionary computation 

paradigms, the proposed algorithm is confirmed to be 

competitive.  
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TABLE I. 

COMPARISON OF EXPERIMENT RESULTS ON BENCHMARK FUNCTIONS IN [38] 

Function  SR [23] GA- AISc [24] AIS [12] AISconst [13] T-cell [17] Proposed AIS 

G01 

-15.0000 

b -15.000 -14.98887 -14.9874 -14.993 -15 -15.0000 

Mn -15.000 -14.97514 -14.7264 -14.989 -15 -15.0000 

w -15.000 -14.93905 -12.9171 -14.982 -15 -15.0000 

sd 0.0E+00 8.06E-03 6.07E-01 2.98E-03 0.0 1.0E-08 

FR 100% 100% 100% 100% 100% 100% 

G02 

-0.8036191 

b -0.803515 -0.7834507 -0.8017 -0.7821 -0.801367 - 0.8033658 

Mn -0.781975 -0.7351923 -0.7434 -0.7573 -0.752975 -0.78142542 

w -0.726288 -0.6567412 -0.6268 -0.7230 -0.687827 -0.72769313 

sd 2.0E-02 2.26E-02 4.14E-02 -1.4E-02 3.20E-02 5.19E-03 

FR 100% 100% 100% 100% 100% 100% 

G03 

-1.0005 

b -1.000 -0.8879961 -1.0 -1.0 -1.0 -1.0005 

Mn -1.000 -0.4908986 -1.0 -0.9880 -1.0 -1.0005 

w -1.000 -0.0406379 -1.0 -0.9108 -1.0 -1.0005 

sd 1.9E-04 2.12E-02 0.0 2.50E-02 0.0 1.77E-05 

FR 100% 100% 100% 100% 100% 100% 

G04 

-30665.5387 

b -30665.539 -30665.3889 -30665.5387 -30665.1117 -30665.5385 -30665.5377 

Mn -30665.539 -30662.9301 -30665.5386 -30645.9122 -30665.5384 -30665.4766 

w -30665.539 -30665.5270 -30665.5386 -30553.7827 -30665.5382 -30665.4057 

sd 2.0E-05 2.28 0.0E+00 3.19E+01 1.0E-04 8.69E-03 

FR 100% 100% 100% 100% 100% 100% 

G05 

5126.4967 

b 5126.497 5166.0885 5126.999 5126.660 5126.6255 5126.5176 

Mn 5128.881 5204.1544 5436.1278 5468.743 5378.2678 5241.0371 

w 5142.472 5256.9017 6111.1714 6112.072 6112.1181 5800.9546 

sd 3.5E+00 3.85E+01 3.0E+02 3.39E+02 2.98E+02 1.7E+02 

FR 100% 12% 90% 75% 80% 100% 

G06 

-6961.81385 

b -6961.814 -6961.7961 -6961.8105 -6961.7940 -6961.81387 -6961.81385 

Mn -6875.940 -6961.7659 -6961.8065 -6960.3768 -6961.81386 -6961.76486 

w -6350.262 -6961.7558 -6961.7981 -6956.7421 -6961.81385 -6961.73297 

sd 1.6E+02 1.23E-02 2.7E-03 1.18E+00 3.9E-05 1.9E-02 

FR 66% 100% 100% 100% 100% 100% 



 
 

G07 

24.3062090 

b 24.307 24.4482393 24.5059 24.531708 24.3209 24.3340080 

Mn 24.374 24.8274137 25.4167 25.644893 24.6534 24.4442634 

w 24.642 25.9281175 26.4223 27.056295 25.1347 25.9380345 

sd 6.6E-02 3.2E-01 4.63E-01 6.67E-01 2.19E-01 8.2E-01 

FR 100% 100% 100% 100% 100% 100% 

G08 

-0.0958250 

b -0.095825 -0.0958250 -0.095825 -0.095825 -0.095825 -0.0958250 

Mn -0.095825 -0.0958250 -0.095825 -0.095825 -0.095825 -0.0958250 

w -0.095825 -0.0958250 -0.095825 -0.095825 -0.095825 -0.0958250 

sd 2.6E-17 0.0E+00 0.0E+00 0.0E+00 0.0E+00 3.8E-14 

FR 100% 100% 100% 100% 100% 100% 

G09 

680.6300573 

b 680.630 680.6801414 680.6309 680.6519 680.63 680.6300568 

Mn 680.656 680.9005951 680.6521 680.8343 680.65 680.7012904 

w 680.763 681.2122556 680.6965 681.1475 680.70 680.7253848 

sd 3.4E-02 1.3E-01 1.76E-02 1.34E-01 1.67E-02 1.2E-01 

FR 100% 100% 100% 100% 100% 100% 

G10 

7049.248020 

b 7054.316 7053.5055 7127.9502 7058.45 7050.8342 7052.603348 

Mn 7559.192 7361.5796 8453.7902 8344.69 8020.7551 7451.358134 

w 8835.655 8701.1528 12155.1358 15787.89 9054.2923 8727.057749 

sd 3.4E+02 2.69E+02 1.23E+03 1.79E+03 6.21E+02 4.5E+02 

FR 100% 100% 100% 100% 100% 100% 

G11 

0.7499 

b 0.750 0.74990 0.75 0.7499 0.7499 0.74990 

Mn 0.750 0.75088 0.75 0.7499 0.7499 0.74990 

w 0.750 0.77098 0.75 0.7499 0.7499 0.74990 

sd 8.0E-05 3.90E-003 0.0E+00 1.0E-06 0.0E+00 1.4E-08 

FR 100% 100% 100% 100% 100% 100% 

G12 

-1 

b -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 

Mn -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 

w -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 

sd 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 1.2E-10 

FR 100% 100% 100% 100% 100% 100% 

G13 

0.0539415 

b 0.053957 0.5148793 0.05466 0.05820 0.054638 0.053938520 

Mn 0.067543 1.2220168 0.45782 1.37142 0.458857 0.054025374 

w 0.216915 4.8769912 1.49449 16.43139 0.994983 0.054212043 

sd 3.1E-02 1.14E+00 3.7E-01 2.9E+00 3.44E-01 7.8E-05 

FR 100% 24% 100% 100% 100% 100% 

 


